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3.0 ANALYSIS OF INSTRUMENTAL POLARIZATION OF IMAGING OPTICS

3.1 Introduction

The objective of the SAMEk magnetograph's optical
system is to accurately measure the polarization state of
sunlight in a narfow spectral bandwidth over the field of view of
an active region to make an accurate determination of the
magnetic fields in that region. Our design goal'is to measure
magnetic fields to an accuracy of one.part in 104, To achieve
this accuracy requires a polarimetric accuracy of 1074 in
determining the polarization components of the light as a
. fraction of the total intensity. This requirement means that the
instrumental polarization of the optics must be reduced to levels
below 1073.

All optical elements introduce some polarization
change, especially when used off axis. Combinations of mirrors
and antireflection-coated lenses can display a full range of
polarization behavior: 1linear and circular polarization and

s .
linear and circular retardance.
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Qf particular cconcern in the
development of highly accurate polarimeters is polarization
rotation which causes linearly polarized light to leak through
subsequent of crossed polarizers.

Because of this instrumental polarization, the SAMEX
foreoptics (the optical elements in front of the polarizer - the
Cassegrain telescope and the relay lenses) must be considered as
a weak polarizer in front of the polarimeter section. This

instrumental polarization in the foreoptics changes the

polarization state of the sunlight incident on the polarimeter




and thus introduces errors in the measurement of .the solar
magnetic field.

If possible, it would be preferable to place the
polarimeter before the imaginag optics, to locate polarizers and
retarders in front of the Casseqrain telescope. Then the
determination of the polarization state of light would be
unaffected by the instrumental polarization of the foreoptics.
This design would have the additional'advantaqe of allowing the
light to pass through the polarimeter over a smaller range of
angles of incidence. However, such a design is impractical for a
system with a 30 cm aperture - high quality polarizers and
retarders have much smaller apertures, on the order of a few
centimeters. Thus, it is necessary to use collecting optics to
collect the 30 cm aperture of light and focus it through sméll
polarizing elements in the polarimeter section. As the collected
light is passed through smaller apertures, the anqular spectrum
of the light increases in a relationship governed by the Lagrange
invariant. By reducing the beam from 30 cm to 2 cm through the
tunable filter and polarimeter, the range of angles of incidence
is increased by a factor of 15, from 5 min of arc to 75 min of
arc, thereby increasing the angle of incidence effects in the
lenses just in front of the polarimeter and in the polarimeter
itself. Consequently we anticipate there will be some
instrumental polarization due to the foreoptics in the light
entering the polarimeter.

The goal of the analyses outlined in this section is to

precisely characterize the extent of this instrumental




polarization, ;nd to design the optics and coatings in unison to
minimize this spurious polarization introduced by the
foreoptics. We will show calculations of the instrumental
polarization of ordinary foreoptics compared with the
polarization performance of special ultra-low polarization
optical coatinas designed for this application.

The instrumental pqlarization analysis uses a program
tha incorporates the theory of polari;ation into the standard
geometrical optics and lens design codes (Chipman, 1987). By
including the polarization of the optical elements in the first-
and third-order design process, the effects of coatings on curved
substrates can be treated. For each ray, a polarization matrix
(in the Jones matrix formulation) is calculated for the ray at
each optical intercface. These matrices are multiplied toqegher
to calculate the polarization matrix for that ray from object
space‘to image space. An analytic function for the rays provides
the polarization behavior as a function of the exit pupil, object
height, and wavelength. This technique represents a quantum jump
improvement in the practical design of foreoptics in front of a
polarimeter and will enable the deqree of residual instrumental
polarization to be reduced to < 1075 in the SAMEX magnetograph

system.

3.2 Instrumental Polarization of Standard Cassegrain Telescopes
To establish the need for a detailed polarization
analysis, we estimate the polarization effects associated with a

Cassegrain telescope with aluminum thin film coatings. The




electric vector of light incident on a surface éf the Cassegrain
can be decomposed into two parts, the components of the vectér
vibrating parallel (p) and perpendicular (s) to the plane of
incidence. These components have different reflections as a
function of the ;ngles of incidence. Figure 23.a shows the
reflectance for s and p polarized light from an aluminum thin
film coating with complex index of refraction n'= 0.7 - 7.0 1.
Figure 23.b shows the phase change on reflection for the s and p
components. The difference in s and p reflectance causes a weak
linear polarization aligned perpendicular to the plane of
incidence to be associated with reflection from all metallic
interfaces. Moreover, tﬁe differences in phase change cause a
weak linear retardance to be associated with reflection from
mirrors.

The percent reflections from the aluminum surface for
the surface parallel (s) and surface perpendicular (p) rays are

approximately given by
R, = 0.94 + 0.02i2,
and

0.94 - 0.02i2,

o
1}

where the reflectance rate of change per unit angle of incidence
squared (iz) is approximated from Figure 23.a. Therefore, the

induced linear polarization is estimated to be
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Figure 23. Linear polarization and retardance effects for a
Cassegrain telescope. The percent reflectance (a) and phase
change (b) on reflection from an aluminum thin-film coating is
shown for both the s and p components of- the incident light wave.
The wavelength of the light is 5250 A and the complex refractive
index of the aluminum coating is n = 0.7 - 7.0 VY. The
differences in the s and p reflectance cause linear polarization
aligned with the incident plane. The differences in the s and p

phase cause a linear retardance. The differences are small for

'f~£small angles of incidence, but they are.not negligible for the

SAMEX magnetograph design.-




At the edge of the primary mirror of aperture D and focal length
fl, a ray is reflec:zed through a total angle of tan(D/fl) ~ D/fl
= 1/f£, where £ is the f-ratio. Then for a Cassegrain telescope
the maximum angle of incidenqg i, is given approximately by one
half the reciprocal of the f-ratio. 'For an f-ratio of 5, the
angle of incidence is imsl/lo. Hence the induced linear

%6%2 = 2 x 10'4. For a linearly

polarization is on the order of
polarized ray this represents a rotation of its plane of
polarization over a segment of the mirror, and this rotation
introduces errors in the deduced polarization state. In Figure
24 the angle of incidence versus the pupil coordinate for an
'illustrative' Cassegrain telescope is shown for an on-axis and
off-axis ray. The point to note is that, for the off-axis ray,
the average angle of incidence is not zero, and hence there is a
net polarization effect associated with the off-axis rays.
Furthermore, even on-axis, we average over the square of the
incident angle which gives a net polarization contribution, as
shall be discussed below.

For an on-axis beam incident on either of the aluminum
coated Cassegrain telescope mirrors, the magnitude and
orientation of the linear polarization and linear retardance
associated with the mirrors have the forms shown in Figure 25.a

(polarization) and Figure 25.b (retardance) as a function of the

pupil coordinates. In Figure 25.a, the linear polarization is
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Figure 24. 1Illustrative example of angles of incidence at
Cassegrain mirrors. These curves show the variations of the angle
of incidence along the normalized pupil coordinate for on-axis
and off-axis rays incident on both the primary and secondary
Jmirrors of a Cassegrain system. The off-axis rays have a non-
‘zero average angle of incidence at both the primary and secondary
mirrors. This implies a net linear polarization assoclated with

the telescope for off-axis rays. The example shown here is for a

Cassegrain with a larger field of view than the one chosen in the
SAMEX design. It was chosen to provide a vivid example of the
ofﬁ-axxs ptoblem. ; :

Ny ot




|
e
/ RN
l
x
/ AN
IR
\ /
B8.

Cassegrain telescope. The linear polarization pattern (a) and
linear retardance pattern (b) associated with an aluminum-coated
Cassegrain primary mirror are shown for an on-axis beam. In (a)
the magnitude and orientation of the linear polarization are
given as linear segments. In (b) the linear segments represent
the magnitude and fast-axis orientation of the retardance. Both
patterns are quadratic functions of the pupil coordinate and are
termed "polarization defocus.”

" - 'Figure "25. . Patterns of linear polarization and retardance for-a




zero in the center of the mirror where the beam is at normal
incidence. The magnitude of the linear polarization
(polarizance) increases quadratically with distance from the
center of the mirror. The linear polarization is oriented
tangentially. This polarization pattern (polarization
aberration) is called linear polarization defocus (or quadpol).
Figures 26.a and 26.b show the effect of large amounts of linear
polarization defocus (about 40 times.more than the conventional
Cassegrain) on beams of uniform left-circularly polarized light
(a) and uniform, vertical-linearly polarized light (b). The
linear polarization associated with the telescope mirrors changes
the polarization state of the light causing spatial variations of
intensity and polarization across the beam. If the polarization
state of the light is now measured with a polarimeter, a
polarization state different from that incident on the mirrors is
obtained. Despite the symmetry associated with the resulting
transmitted polarization patterns (such as in Figure 26), the
polarization variations do not cancel (due to averaging over the
incident angle squared). This is best understood by considering
the transmitted light as being a superposition of two
polarization states: the incident state yields the correct
polarization measurement; the light in the orthogonal state
constitutes the error signal introduced by the instrumental
polarization.

For example, in the case of Figure 26.b, the light in
the orthogonal state (horizontal linear polarization) has the
form across the pupil shown in Figure 27. Although the phases of

this horizontal component are 180° out of phase in the four
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Figure 26. Linear polarization defocus effects for a Cassegrain
telescope. This figure illustrates linear polarization defocus
effects for a Cassegrain primary mirror for a beam of (a) uniform
left circular polarization and of (b) uniform vertical linear
polarization. The ellipses and arrows at the top, bottom, left,
and right of the diagram represent the same relative position of
the polarization ellipse of the reflected beam of a Cassegrain
mirror with an exceptionally large field of view (40X the normal
Cassegrain field). The location of the arrowheads represents the
phase of the light where one cycle is a full wave. The defocus

f,effect introduces the orthogonal state of polarization which

‘represents an error signal introduced by the instrumental
polarization in the measurements made with the magnetograph.
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Figure 27. Polarization errors associated with a Cassegrain
telescope. This figure illustrates the orthogonal state of
polarization introduced by the instrumental polarization of a
Cassegrain mirror for the incident linear (vertical) polarization
of Figure 26 b. These horizontal components will pass through
the linear polarizer of a magnetograph's polarimeter when it is

in the horizontal position and thereby contribute to the error

" §signal of the magnetograph.
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quadrants (resembling astigmatism), all this light will pass
through a horizontal linear polarizer and contribute to the
polarization error signal. The phase differences do not cause
cancellation of the polarization aberration; instead they affect
the polarization accuracy and change the structure of the
diffraction pattern (Kubota and Inoue, 1959).

For a metallic mirror, the effects of the linear
retardance are orders of magnitude larger than the effects of the
weak linear polarization. Figure 25.b shows the form of the
linear retardance associated with an on-axis beam incident at a
Cassegrain telescope mirror. The orientations of the lines
represent the orientation of the fast axis of the retardance.

The lengths of the lines signify the magnitude of linear
retardance, which increases quadratically with pupil

coordinate. This polarization aberration is called linear
retardance defocus or quadtard. Figures 28.a and 28.b show the
effect of quadtard on a uniform left-circularly polarized beam
(a) and on a uniform; vertical-linearly polarized beam (b). The
dominant effect of the retardance is a coupling of linear into
circular polarized light and vice versa. These figures are for
retardances about 40 times greater than the retardance of a
conventional Cassegrain.

In general, a Cassegrain telescope displays both these
polarization aberrations simultaneously, linear polarization
defocus and linear retardance defocus, with the retardance being
the larger term. This polarization aberration induces
polarization coupling which reduces the accuracy of subsequent

polarimetric measurements. The polarization coupling for a




SAMEX-type Cassegrain design but with standard aluminum coatings
is 3 x 10'3, almost two orders of magnitude greater than the
radiometric accuracy of the optics. Similar amounts of
polarization accuracy would be associated with relay optics

utilizing standard antireflection coatings.

3.3 The SAMEX Design

It is clear from the discuséion of the previous section
that standard optical designs will not suffice for the SAMEX
foreoptics because they produce unacceptable levels of
instrumental polarization. The design of the SAMEX foreoptics
resulted from the development of a new method for the analysié of
instrumental polarization based on the theory of "polarization
aberrations.”™ This theory allows the description of the

variations of amplitude, phase, and polarization of an optical

wavefront across the exit pupil of an optical system. Because
the theory naturally incorporates the polarization properties of
the thin film coatings on the individual surfaces of the optical
system, this method integrates the coating design with the lens
design. 1In ordinary optical design work, these two phases of the
design are normally decoupled and pursued separately.

This unified optical and coating design was performed
for the SAMEX foreoptics to insure that the SAMEX magnetograph
will accurately measure the polarization state of incident
sunlight. To improve the SAMEX polarization accuracy over
standard designs, various telescope and lens coatings were
investigated. Most standard reflection-enhancing coatings for

telescope mirrors were found to be substantially worse than the
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Figure 28. Linear retardance effects associated with a
Cassegrain telescope. The large effect of linear retardance from
a Cassegrain mirror is shown for (a) a beam of uniform left
circular polarization and for (b) a beam of uniform linear
(vertical) polarization. The dominant effect of linear
retardance is a coupling of linear polarization into circular and
vice versa.
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bare aluminum. Two coatings were designed which had
significantly improved polarization performance for a

telescope. These coatings are described in the section on
coatings (section 3.6). Figure 29 shows the linear polarization
(a) and linear retardance (b) associated with a Cassegrain
telescope when these coatings are utilized and when ordinary
aluminum coatings are used, as a function of the height of the
ray entering the telescope, from top to bottom. The amount of
polarization or retardance for the three coating choices is
plotted along the y-axis for (1) two aluminum coated mirrors, (2)
two Q201 coated mirrors, and (3) one Q201 coated mirror and one
eight-layer enhanced-reflection coating. The third design (3)
balances polarization and retardance effects of opposite signs
between the two mirrors to achieve a polarization performanée
superior to either mirror separately.

Similar design strategies have been used with the relay
lenses to achieve significant improvements over conventional
coatings and to balance the remaining polarization effects. As a
result, the overall polarization performance for the foreoptics
has been improved by a factor of ten thousand relative to
conventional designs. Thus the actual attainment of the
polarimetric sensitivity determined by the SAMEX requirements
will presumably be limited only by whatever scattering effects
are present, and not by the instrumental polarization of the
optics.

The method used to achieve this dramatic result -

polarization aberration theory - is outlined briefly in sections
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Figure 29. Instrumental polarization effects for rays through a
Cassegrain telescope. Linear polarization (a) and retardance (b)
as a function of pupil coordinate in a Cassegrain telescope are
plotted for three different sets of reflective coatings on the
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(1) two aluminum (dot-dash curve), (2) two Q201 coatings (dashed
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3.4 and 3.5 and expanded upon in Appendix C. A full.development
of the method is given in Chipman (1987). The basic results from
the method are the second-order polarization aberration
coefficients which provide a quantitative measure of the
polarization accuracy of any optical system. Specificaliy, these
coefficients determine the parameter Ap, the polarization
accuracy, defined as the maximum fraction of light which can be
coupled into an orthogonal polarization state. It is given in
terms of the second order polarization aberration coefficients

p(1,0,2,2), P(1,1,1,1), and P(1,2,0,0):

1
8, < P(1,2,0,00% + 3 2(1,1,1,102 + L p(1,0,2,22 .
For the SAMEX magnetograph foreoptics and coating design given
herein, the value of

A< 1.4 x 1077

jo
was obtained. For standard coatings of aluminum, the
polarization accuracy is

-

A= 2.7 x 107°

p
for a Cassegrain telescope alone (no relay lenses). (The second
order aberration coefficients used in these calculations are
given in Table 19.) This result for Ap means we have achieved

our design goal: the polarization state of the light from the

10




Sun can be determined without introducing polarizing effects from
optical elements in the system. We have been able to effectively
eliminate the problem of induced instrumental polarization in the

SAMEX foreoptics.

3.4 Polarization Aberration Theory

The SAMEX foreoptics are intended to transmit all
polarization states equally. But all optical interfaces display
some polarization when used at non-normal incidence. Thus
polarization is present in all systems at some level. If the
system is intended to be nonpolarizing, the instrumental
polarization is often termed "residual polarization” to signify
its generally undesirable character. Residual polarization might
be compared to wavefront aberration because both interfere with
the measurement of optical fields and reduce the image forming
potential of the optical system.

The principal cause of instrumental polarization in the
optical systems of present solar magnetographs is the
polarization due to non-normal incidence at the optical
interfaces and coatings. Since each ray takes a different path
through the system with its own angles of incidence and planes of
incidence, each ray in general experiences a different change in
its state of polarization. This residual polarization varies
with wavelength, object coordinates and pupil coordinates.
"Polarization aberrations" will be defined as variations of the

amplitude, phase and polarization of an optical wavefront across

11




the exit pupil of an optical system and the depehdence of these
variations on wavelength and object coordinate. The polariiation
aberrations are extensions of the wavefront aberrations and
encompass both amplitude and polarization variations, thus
providing a moré complete characterization of the electromagnetic
fields transmitted by an optical system.

Vacuum-deposited thin films are used 6n most optical
surfaces to control the amount of transmission and reflection.
These thin films are usually less than the wavelength of light in
thickness. Being so very thin, the effect of the films on ray
paths are accurately modeled by treating the films as having
parallel surfaces which contour the substrates on which they are
deposited. Due to the closely spaced parallel surfaces, thin
films have negligible influence on the ray paths through the
system and are generally ignored when simulating a system by ray
tracing. These coatings principally affect the amplitude and
polarization of the ray and have much less effect on the optical
path difference. This division, with the optical surfaces
governing the ray paths and the thin film coatings governing the
amplitude and transmission, allows the optical system design
problem to neatly decouple into two separate problems, lens
design and coating design. The wavefront performance and image
quality of the sysﬁem is calculated by a lens designer using a
ray tracing optical design program. The amplitude and
polarization calculations at individual surfaces are performed

using a thin film design program.

12




This decoupling of optical design and coating design has
usually worked well. The coatings designed to optimize the
transmittance or reflectance at an interface have usually reduced
the amplitude and polarization variations and thus reduced the
polarization aberrations at the interface as well. For example,
a quarter-wave magnesium fluoride antireflection coating on glass
typically reduces reflection losses.at the design wavelength by a
factor of four, and reduces the instrumental polarization by a
comparable factor. This fortuitous circumstance has allowed lens
and coating design to remain relatively uncoupled. Thus
instrumental polarization was usually ignored as a higher order
effect. But it is not sufficient to design thin film coatings in
isolation from the lens design for the SAMEX magnetograph - the
demands on amplitude and polarization performance are too great.

For the designs of the SAMEX system special methods
have been developed to calculate the instrumental polarization of
the SAMEX foreoptics. These methods are described in detail in
Appendix C. Calculating the instrumental polarization requires
performing thin film calculations during the ray tracing
proéess. This idea is not new, but its implementation is complex
enough to have delayed this obvious integration of these two
branches of optical design until specifications required it.

In this new methodology, a Jones polarization matrix is
calculated for arbitrary optical paths through the optical system
and inclddes the effects of all the specified optical coatings on
the curved optical interfaces. The specific technique used for

this calculation is the method of "polarization aberrations.”
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This is a method analogous to the aberrations 6f geometrical
optics (spherical aberration, coma, astigmatism, etc.) except
that it encompasses the polarization effects of coatings as well
as the wavefront aberrations.

The analysis of the SAMEX optics proceeds in several
stages and is summarized in Table 16. First, the optical system
is designed using the CODE V optical design program to optimize
the optical design for a spatial resolution with a minimum
aperture. During this phase the angles of incidence are kept as
small as possible to reduce polarization effects from coatings.
Second, special thin-film, reflection-enhancing coatings are
designed for the telescope mirrors and special antireflection
coatings are designed for the lenses because conventional .coating
designs show significant polarization and retardance
contributions near normal incidence. These coatings are special
designs which reduce the polarization effects at small angles of
incidence over the wavelength band of the magnetograph. Next, a
Taylor series is calculated to represent the coating
performance. Finally, the effect of these coatings in the
magnetograph optical design is calculated using the polarization
aberration method; this last step produces the parameter Ap’ the

polarization accuracy.

14




Table 16. Steps in Instrumental Polarization Simulation

1. Design optical system using CODE V.
2. Design low polarization, high reflectivity telescope coatings.
3. Design low polarization, antireflective lens coatings.’

4. Determine Taylor series representation of coating
performance.

5. Calculate polarization aberration,coefficients of optical
system.

6. Calculate Ap'

7. Iterate 2, 3, 4, §5 6 until satisfactory performance is
achieved (Ap < 10 7).

In the following section, the method for deriving the
polarization aberration coefficients and the polarization

accuracy Ap is outlined in more detail.

3.5 Polarization Aberration Coefficients and Polarization
Accuracy

The polarization states of the electromagnetic field
are described by the complex two-component Jones vector, J. The
polarization states and hence the Jones vector are transformed
when a ray passes through an optical interface which is described
by the Jones matrix transformation JJ. For the SAMEX foreoptics
we have homogeneous, weakly polarizing optical elements (by
design) for which the transmission coefficients perpendicular,
tg, and parallel, tp, are given in terms of a Taylor series
expansion of the angles of the chief and marginal rays, i, and

c
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i respectively. Each individual optical ray path for the

m’
rotationally symmetric system can be defined in terms of the
object height, H, and the pupil coordinants, p and ¢ as defined
in Figure 30. The cascade effect of an optical train is given by
- the product of the individual Jones transformation matrices for
each element interface. Then the overall polarization of the
foreoptics is described by the complex Jones transformation
matrix which is expanded in térms of the ray coordinates

(p, o, and H) and the basis matrix set o(k):

v

JJ P(k,u,v,w) HY oV cos¥ (o) o(k)

]
I o1 W

T LI
Ouvw
where P(k,u,v,w) are the expansion coefficients. The 2 by 2
matrices, a(k), which define the kth polarization state, are' the
identity matrix and the Pauli spin matrices. This expansion is
in the same form as the standard wavefront aberration expansion.

These polarization expansion coefficients for an expansion to

second order (specified by s = 2) in the angles of incidence are

a function of the total optical transmission, t, the normalized
secondard order basis set coefficients, d(k,s,q), for each
individual optical element, q, and the angle of incidence of the
chief and marginal rays. Hence these coefficients are dependent
on the characteristics of the optical coatings and the ray
tracing results. These SAMEX specifications are given in Table
19a-c.

fhe polarization aberration expansion for the radially

symmetric system of interfaces with isotropic coatings and

16
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Figure 30. Paraxial coordinate system. The paraxial system is a
normalized right-handed coordinate system. The z axis is the
optical axis of a rotationally symmetric optical system; light
initially travels in the direction of increasing z. Rays through
an optical system are characterized by ray coordinates at the
object and entrance pupil. H is the normalized object
coordinate, p is the normalized pupil radius, and ¢ is the polar
angle in the pupil measured counterclockwise from the y axis.

The normalized Cartesian coordinates in the pupil are x and y.
The chief and marginal rays are also shown.
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nonpolarizing transparent media is given to second order in the
angles of incidence by the polarization aberration expansion’

J3(H,0,8) = tloy + P(1,2,0,0)H%. +

1
P(l,l,l,l)Ho(alcos¢ - ozsin¢) +
P(1,0,2,2)0°(9,c0828 - 0,sin2s)].

The amplitude ajikl of the polarization aberration coefficient

P(i,j,k,1) describes the magnitude of the polarization aberration

effects while the phase §,;

ikl of the coefficient describes the

magnitude of the retardances. Then, given a specific incident
polarization state, the polarization state of the exit beam can
be calculated from this matrix. Therefore the amount of
polarization in the orthogonal state can be determined. This
orthogonal polarization in the exit beam then determines the

accuracy A& _ of the polarization measurement.

P
As an example of the coupling of the optics to an
orthogonal state cf pclarization, i.e.;, polarization crosstalk,

consider the following example. The on-axis linear polarization
and linear retardance of the SAMEX foroptics, i.e., the term
linear defocus, is described by the fourth term in the
polarization aberration expansion JJ. The instrumental

polarization function Jyq(H,p,¢) for linear defocus is then

JIq(H,0,9) r[a0 + P(1,0,2,2)02(alc052¢ - ozsin2¢)]

r[c0 + (a1022 + 761022 pz(clc052¢ - azsin2¢)],
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where 1t is the amplitude of transmittance of the .system down the
optical axis. The transmittance (r) describes the polarization
independent reflection and absorption losses associated with the
ray down the optical axis. P(l1,0,2,2) describes the linear
polarization (ajg;;) and linear retardance (61022) associated
with the marginal ray.

At any given point in the pupil, the eigenenpolarizations

are linearly polarized light, oriented radially, Jr’ and
tangentially St' This concept is important to'the definition of
polarization accuracy which is to be defined. We shall now
calculate for circular and linear incident polarize light to
illustrate of the effect of crosstalk.

Maximum coupling occurs when the incident light is
circularly polarized, since circularly polarized light can élways
be decomposed into equal components of 3r and jt everywhere in
the pupil. The coupling is zero in the center of the pupil
(where the polarization and retardance vanish) and increases to a
maximum coupling at o = 1 of

I max(H/1,0) = |P(1,0,2,2)|% = afy,, + 63.,,
at the edge of the pupil. The net fraction of incident
circularly polarized light coupled into the orthogonal circularly

polarized state, Ié, is given by the integral over the pupil,

2 1 :
L " as [ ede|e®r(1,0,2,2)|3,

(]
[}

|P(1,0,2,2) )3
3 L]
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If we have a Stokes vector of +V then the amount of polarization
in the orthogonal state -V can be calculated. If -V is the
maximum amount of crosstalk, we identify this as the polafization
accuracy.

For incident linearly or elliptically polarized light, the
fraction of coupled intensity is less because the light is not
composed of equal fractions of eigenstates. The coupling is
minimum for incident linearly polarized light, which will be in
one of the eigenpolarizations along one axis in the pupil and in
the orthogonal eigenpolarization along the orthogonal axis. Here
the fraction of coupled energy will be calculated assuming an
incident polarization state of horizontal linearly polarized
light H for calculational simplicity; the same fraction is
coupled for any linearly polarized incident state. The

orthogonal state of vertical linearly polarized light is

-
2

designated as V. The polarization state transmitted by an

optical system described by linear polarization defocus for H is
3(H,0,6) = t(H + P(1,0,2,2)p2(H cos 24 - V sin 2¢)1.

The fraction of incident H light coupled into v light is equal to

2w 1 -
12210 " s [ ode|dHiene) - V|2
0 0

[\8)

2

2|

2n 1 2
[ de [ dp|P(1,0,2,2)0° sin 2¢
0 0
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|p(1,0,2,2)] fzw sin’24d¢ Ilsp dp
0 0

L

|P(1,0,2,2)]°
6 L]

Therefore, we defined the polarization accuracy, A as the

p’
maximum fraction of light which can be coupled into orthogonal
polarization states. The incident poiarized state is given by
the Jones vector, J. This vector is rotated by the optical
system and the rotation is given by the Jones matrix, JJ. The
amount of polarization along the orthogonal state of

polarization, J', of the incident polarization state is given by

the projection of JJ(J) into J'. i.e.
333 -3,

The maximum projection is used in defining the polarization
accuracy. In the above example Ié > Icz, and only Ic1 is
retained for the linear defocus term, P(1,0,2,2).

This value is given by the square of the second order Jones
matrix and is given in terms of the polarization aberration
coefficients. Then the polarization accuracy is given in terms

of the second order polarization abberation coefficients

P(l,o,z,z)’ P(l'l'l'l)' and P(IIZIO'O):

1 2
8 = 3 [ |JJ2(1,9,¢)| pdpd ¢
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or
sy < 1201,2,0,00]% + 3 |21, 1,1,1)|% + 3 |p(1,0,2,2) |2,

where the integrations have been carried out for the squared
terms and estimated for the crossed terms as being less than or
equal to the direct product terms. For the SAMEX magnetograph

)

design, the value for the polarization accuracy,

A < 1.4 x 1077

p
is obtained for specially selected optical coatings. These
second order aberration coefficients are given in Table 19. The
second order coefficients are sufficient since the next order
that contributes is the fourth order and their polarization
effects would be on the order of (Ap)z. In the following section

we discuss the process used to design these special optical

coatings.
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Table 19-a. Table of Total Second Order Polarization
Aberration Coefficients for the
SAMEX Magnetograph Given the Individual
Surface Components of Table 19-b

Vector Quadratic Piston:

P(1,2,0,0) = é d(1,2,q) i %(q)
= -7.72x107° - 7 1.50x10"% radians?

Vector Tilt:

P(1,1,1,1)

L . .
2 5 d(1,2,q) ig(q) ip(q)
= -1.42x10"° - 7 2.70x10-5 radians?

Vector Defocus:

¢ 42,0 ip%q)

-1.91x1073 + 7 1.80x10~¢ radians?

P(1,0,2,2)
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Table 19-b. Surface by Surface Polarization Aberration Contributions

Given Surfaces as Defined in Table 19-c

Vector Quadratig Piston Tilt Vector

Vector Defocus

d(1,2) i.°(q) 2 d(1,2) 1.(q)ip(q) d(1,2) 1i,*(q)
z Re Im Re Im Re Tm
1 8.3e-10 8.4e-7 -3.9%9e-8 -3.9e-5 1.8e-6 1.8e-3
2. =l.le-8 -l.3e-6 3.9e-7 4.6e-5 -1l.4e-5 -1l.7e-3
3 -4,.7e-7 ~l.le-6 4.4e-7 5.8e~-7 -1.3e=7 -3.0e-~7
4 l.le-5 -2.6e-5 ~3.1e-6 . =7 .5e-6 -9.1le-7 -2.2e-6
5 -4.9e-6 -1l.2e=5 3.6e=-7 8.5e-7 -2.6e-8 -6.le-8
6 -1.3e-6 0 -2.3e-6 0 -3.8e=7 0
7 -5.1le-6 -1.2e-5% ~l.4e-6 -3.4e-6 -4.le-7 -9.8e=-7
8 -2.8e-5 -6.6e=5 -2.3e-6 -5.5e~6 -1.9e-7 -4.6e-7
9 -1.3e-5 -3.le-5 -1.5e-6 -3.6e-6 -1.7e-7 -4,2e=-7
10 -l.1le-8 l.le-6 5.le-8 -4 .9%e-6 -2.3e-7 -2.2e-5
11 -5.7e-7 0 1.2e-6 0 -2.7e-6 0
12 -l.le-6 -2.7e-6 l.3e-6 3.1le-6 -1.5e-6 -3.6e-6
Note: The surface numbers S(i) are related to the surface numbers

q by S(i) =g + 2,

i.e. g=1

prefilter is not considered.

is the primary mirror and the 10
The notation 8.3e-10 means 8.3x107*",
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Table 19-c.

Thé Surface Definitions for the Polarization Aberration
Coefficient Calculations

Surface Optical Paraxial Angle Second Order,, Magnitude of
q Coating 1.(q) 1,(q) Polarization 2nd Order
Im Polarization
1 refl201 0.00134 -0.06250 2.82e-7* 2.84e-4 2.8e-4
2 layers8onAl  0.00236 -0.08519 -1.20e-6 -1.3%-4 1l.4e-4
3 v10c5256 0.03862 -0.02031 -1.90e-7 -4.53e-7 4.9e-7
4 " 0.18664 0.05388 " " "
5 " 0.12576  -0.00908 " " "
6 k£9£k5 -0.30317 -0.05091 -8.91e-8 0.0 8.9%e-8
7 v10c5256 =0.12743  -0.03622 -1.90e-7 -4.53e-7 4.9e-7
8 " =0.29808 -0.02495 " " "
9 " -0.20326  -0.2363 " " "
10 v10c525 -0.00703 0.03169 -1.38e~7 1.33e-5 1l.3e-5
11 kE£9£kS -0.06243 0.13588 -8.91e-8 0.0 8.9%e-8
12 vcl10c5256 -0.5980 0.06974 -1.90e-7 -4.53e-7 4.9e-7

*(2.82e~7 = 2.82x10~7)

**The rate of
squared (deg

=2
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3.6 Coating Designs

A design study was performed to find coatings especially
suitable for use in the SAMEX magnetograph. First, many
conventional coatings were examined and found to have
polarization and retardance properties that make them
unacceptable for use in the SAMEX magnetograph. Alternative
coating designs were devised with improved polarization

performance and the best of these were specified for the

instrumental polarization simulation. Coatings were designed,

optimized and analyzed using two thin film coating programs: FTG

Software's Filmstar and Prof. A. Macleod's (University of
Arizona) FILMS.
The requirements for the SAMEX magnetograph coatings are

following:

1) They must have extremely low polarization properties
near normal incidence so that they introduce a minimum of
polarization or retardation into the optical system.
Specifically, the differences between the s and p amplitude
coefficients for reflection or transmission for less than 10°
angle of incidenée should be 0.01% and the phase difference
should be less than 0.05°.

2) The system{s transmission must not be compromised by
coatings: reflective coatings should reflect > 99.9% and
transmissién coatings transmit > 99.7%.

3) They must be manufacturable and nbt be excessively

costly.
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4) The amount of scattered light should be ‘small.

5) They should have reasonable tolerances for fabrication.

Several common reflecting coatings for telescopes and
antireflecting cdatings for lenses were analyzed and found to be
inadequate for the SAMEX magnetograph. For example, telescopes
are frequently coated with bare aluminum coatings (Al) or
quarter-wave stacks on top of aluminum. These coatings have very
little linear polarization near normal incidence but substantial
amounts of linear retardance. The common antireflection coatings
for lenses (quarter-wave MgF, and broadband antireflective
coatings) have very little retardance near normal incidence but
substantial linear polarization.

Three coatings (see Table 20) have been selected from 6ur
coating design study for inclusion in the SAMEX magnetograph
design. The polarization effect of these coatings has been used
in the instrumental polarization simulation. These coatings

. .
am a =
emcnstrate that ccatings with the necessary low

Alarisatinn
1 N e W e de b A N A4

performance can be designed. The present coatings are somewhat
sensitive to fabrication errors and are very wavelength
sensitive. The designs would benefit from further work to
understand why they work, knowledge which should lead to fully
optimized designs with improved manufacturing tolerances.

Table 20 contains the description of the three coatings
specified.- In addition, the optical system contains two cemented
interfaces, between kf£9 glass and fk5 glass, specified kf9fkS5.
The polarization of this interface, although negligible, was

included in the instrumental polarization calculation.
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“Figure 31. "Optical properties of the interference coating Q201.

The phase and reflectance properties of the interference coating
Q201 designed for the SAMEX telescope mirrors are shown as func-
tions of the angle of incidence (A, on the left) and wavelength
(B, on the right). (Al) The phase of a reflected beam is shown
as a function of the angle of incidence. The s and p components
of an incident wave of wavelength 5250 A are shown as one curve.
(A2) The difference in phase of the s and p components shown in
(Al) is plotted as a function of the angle of incidence. (A3)
The % reflectance of a 5250 A reflected wave is shown as a func-
tion of the angle of incidence. (Bl) The phase of the reflected

wave is plotted as a function of wavelength. (B2) The percent
reflectance of a wave incident at an angle of 2° is shown as a

function of wavelength. (B3) The percent reflectance of a wave
incident at an angle of 6° is shown as a function of wavelength.




The coating Q201 is a 20l-layer, quarter-wave enhanced
reflection coating specified for the primary mirror. The
philosophy behind this design is that the polarization effects
arise because of large refractive index differences between
layers. This coéting uses two materials with a small inde#
difference, fused silica at n=1.45 and evaporated glass at
n=1.52. To achieve the desired reflection performance with
smaller index differences requires more layers, 201 in this
case. The materials chosen are both amorphous and thus quite
suitable for coatings with large numbers of layers, since they
don't display the microcrystalline growth patterns which lead to
the unacceptable scattering and inhomgeneity associated with
crystalline materials. Figure 31 shows performance curves for
Q201 both as a function of angle of incidence and wavelength.
Figure 31.a-1 shows the absolute phase change on reflection for
the s and p components. The quadratic portion of these curves is
the defocus introduced by the coating. The parameter of greatest
interest is the retardance, the difference between the s and p
phase changes; it is plotted separately in 3l.a-2. This
retardance is below 0.1° over the angles of incidence of
importance. Figure 31.a-3 shows the s and p intensity
reflectance as a function of angle of incidence. The difference
between the s and p reflectance is the linear polarization, here
less than 0.01%.

The coating specified for the secondary, L8onAl, is a more
conventional 8-layer, reflection-enhancing coating specially

optimized to complement the Q201 coating. This coating has the

27




opposite sign on both its linear polarization and retardance
relative to Q201. Thus the small residual polarizations of Ehese
two coatings tend to cancel, resulting in a nearly polarization
free Cassegrain design.

The coatingé specified for the lens surfaces are a two-layer
coating of the V coating family of designs. A region of solution
was found with the remarkable property that thevlinear
polarization and linear retardance both changed signs within 50
nm in wavelength of each other. Thus, by varying the thicknesses
of the layers, low polarization coatings with several different
useful properties were obtained. The two scalings used in the
design were 1.0 for the coating v10c525 and 1.06 for vcl0S5S256.
These coatings have by far the lowest polarization effects pf any
lens coatings investigated. Fabricating and testing samples of

these coatings should be conducted in the next study phase.

Table 20. Coatings Specified for the Magnetograph.

Name Type Mumber of Polarization Reflectance or Coating
Layers Magnitude Transmission Design
V10C525 Antireflection 2 4.9%e~7 99.7% (.25 .25L)100 .254H
H=1.52 L=1.45
Q201 Reflective 201 2.8e~-4 99.98% (.062H
.82L)
H=2.15 L~1.38
L8onAl Reflective 9 l.4e-4 99.65% .38H .,29L .26H
.25L (.25H

H=2.38 L[=1.38
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All the polarization analyses of thin films performed hére
have assumed ideal, thin-film structures, materials which are
uniform, isotropic, homogeneous and free from scattering. This
is a sufficient assumption for the design and analysis of the
thin films. Actual thin films possess extremely complex
microstructure which contributes to scattering, inhomogeneity and
anisotropy. The typical thin film microstructure is an array of
columns growing up out of the substrate. This causes nonideal
coating properties which will impair the performance of the
system at some level.

The performance of the SAMEX magnetograph will be enhanced
by using the finest coatings available, which will probably be
deposited using ion-assisted thin film deposition. By bombarding
the growing thin film with energetic ions, usually helium or
argon, the growing thin film structure is pressed down and
becomes denser (Martin, 1986). This disrupts the growth of the
large columnar structures which are responsible for much of the
scattering and anisotropy. The resulting f£ilms have lower
scatter and greater uniformity. The ion-assisted thin film
deposition technique is still new and not yet widespread in its
use.

As part of the preliminary efforts leading to the actual
fabrication of the SAMEX magnetograph, test coatings need to be
prepared and coating vendors qualified. Several coating
manufacturers should be contracted to prdduce small (2 x 2 inch)

samples of the specified coatings. These coatings should be
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tested for spectral transmission, polarization performance and -
scatter (bidirectional reflection measurements) as part of the
final design and vendor qualification. The Marshall Space Flight
Center and the University of Alabama in Huntsville Center for
Applied Optics have the expertise for such coating
characterization. These data would then be used to calculate the
impact of the stray light céming from the coating scatter on the

magnetic field accuracy of the magnetograph.

3.7 Further Sources of Instrumental Polarization

Two effects that could degrade the polarization performance
of the SAMEX optics are coating anistropy and scattered light.
Coating anisotropy is the variation of refractive index with
direction in the coating. Coating anisotropy can be measured
ellipsometrically. It frequently occurs where coatings have been
deposited at non-normal incidence. Most coatings have a columnar
microstructure which usually grows out of the substrate toward
the source. For a nonnormal deposition angle, the resulting
coatings have builtin birefringence. For the magnetograph
optical design, this additional coating-induced retardance is a
problem which must be held to acceptable levels in the final
coatings. A level of anisotropy below a root sum squared
birefringence of 0.0001 radians rms per coating is highly
desirable.

Scaétering depolarizes light: the scattered light is random
and carries less information about its ofiginal polarization

state. Coatings, because of their detailed microstructure, may

30




display substantial scattering. Considerable éffort is being
devoted on many approaches to producing optics with reduced
scatter, including the ion-assisted deposition coatings already
mentioned. Scattering in the coatings of the foreoptics will
probably be the limiting factor in the accuracy of the
magnetograph, now that the instrumental polarization of the

Cassegrain telescope has been reduced by orders of magnitude.

3.8 Optical Tolerances

An optical tolerance study of the magnetograph is outside
the scope of this study. However we would like to point out the
areas of special study that are needed for a flight instrument.

The individual optical components need to be qualified for
spaceflight. This would include operation under a vacuum for an
extended period of time. The effects of particle radiation over
the lifetime of the spacecraft must be resolved. The mechanical
robustness of the optical system is to be defined. This would
include the effect of thermal drift on the optical alignment.
The general effects of mechanical fitting and sensitivity due to
fabrication errors need to be addressed, including surface
figure, tilts, decentrations, and optical coating variations.
The overall alignment and calibration procedures are to be

specified before the optical design is completed (Yoder, 1986).
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APPENDIX C
POLARIZATION ABERRATION THEORY

Introduction

This appendi# describe the method which have been developed
to calculate the instrumental polarization of the SAMEX optics.
A f&ll development of the method is cgntained in "Polarization
Aberrations" by Chipman (1987). The calculation requires
performing thin film calculations during the optical design
process to determine the two parts (eigenvectors) of an optical
- beam, as a function of the object and pupil coodinates.

The mathematical method of treating instrumental
polarization will be first discussed in terms of the Jones and C-
vectors and then the polarization aberration expansion will be

derived.

The Jones Matrix and C Vector for the Characterization of
Polarization

The most efficient mathematical method for treating the
SAMEX instrumental polarization is the Jones calculus. The
Mueller calculus-is a more difficult representation which
includes optical depolarization (scatters) properties. Such weak
depolarization effecﬁs are more readily handled by experimential
measurements. The Jones calculus (Jones 194la-c,1942,1947, Azzam
and Bashara 1977, Theocaris and Gdoutos) is a mathematical
formalism for treating problems involving the description of

polarized light and polarizers which uses the Jones vector for




the description of polarized light and the Jones matrix to
characterize the polarizing properties of an optical element.:
The details of the following discussion are given by Chipman
(1987). The elements of the Jones matrix and the C vector

characterization are outlined first.

Definition of the Jones Vector in terms of the Electric Field
Amplitudes ) .

The Jones vector expression for the a quasi-monochromatic

plane wave propagating parallel to the z axis with electric field

amplitude
E(t) = E,(t) + Ey(t) ’
where,

Ex(t) = ﬁx EO,x (t) cos[(kz-wt) + ex] ’

and,
Ey(t) = ny Eo,y (t) cosl(kz-wt) + eY] ’

where ny and Ny, are direction unit vectors in the x and y
direction with the light propagation in the z direction. There
are 4 parameters Eo'x, Eo,y' eyr and ey defining the wave beside
the wavelength.

The time dependent Jones vector is defined in terms of the

electric field amplitudes as,




Ey (£)
J(t) = :

Ey(t)

o e—

The components of J(t) are the instantaneous components of E(t).
The normalized Jones vector J is a time independent
normalized vector where all the vector components of J(t) have

been divided by the incident electric field amplitude,
J = J(t)/Eg(t) .

The normalized Jones vector is referred to as "the Jones vector”
unless otherwise stated. Knowledge of J and E, provides all the
information necessary to reconstruct E(t) to within a constant
phase factor.

Table C-1 lists the Jones vectors for the most common
polarization states: horizontal linear,‘'vertical linear, +45
degrees linear, -45 degrees linear, right circular and left
circular polarized light . These vectors can be multiplied by an
arbitrary phase factor without changing the polarization ellipse
of the light; it only changes the absolute phase.

Having established the vector which defines the polarization
state we now consider the matrices which represe;£ the
polarization effect of the optical elements and allow

polarization calculations to be performed.



Table C-1. The Basic Jones Vector Representation  for Linear
and Circular Polarized Light

Linear Polarized Light

Horizontal - Vertical +45 Degrees -45 Degrees
ll Ol s l' sl ll
0‘ 1 1 -1

Circular Polarized Light

Right Circular Left Circular
s| 1] s | 1]
I=1] Li]
where s = i%

In his original paper, Jones (194la) shows that the
relationship between the Jones vector incident on a polarizer, J,
and that transmitted or reflected by a polarization element, J°',
can always be related by a matrix, the Jones matrix, JJ. Only
certain transformations of the field components are allowed,
those describable by a matrix. Thus the fundamental relationship
between the vector components of the electromagnetic fields

before and after a polarizing element is,
J' =J3 J

The Jones matrix, JJ, is a two by two matrix with complex

elements,

(1) §(1,2)
i(2,1)  3(2,2)

JJ




where j(k,1) = a(k,l) + i b(k,1) .

Thus the Jones matrix has eight degrees of freedom. Thus
there are eight different forms of polarization behavior. These
eight forms are listed in Table 2E. Every Jones matrix

corresponds to a physically realizable polarizer.

Sequences of Polarizers A

The Jones matrix associated with‘an optical ray path through
a sequence of polarization elements is just the matrix product of
the Jones matrices for the individual polarizers. If an optical
ray traverses a series of elements, 1, 2, ... Q, and the Jones
matrices appropriate to that ray for each element are, JJ(1l),
JJ(2), «.. J3(Q), then the Jones matrix describing the

polarization properties of the system along this ray path i§

given by the matrix product,

JJ = JJI(Q) ... JI(2) JI(1)

Since the Jones matrix of an optical element is dependent
upon the wavelength, angle of incidence, orientation, and path
through the element, each ray in each wavelength will usually
have a different Jones matrix. Only if a collimated
monochromatic beam through a series of planar optical interfaces
can be assumed, then a single Jones matrix can be written for the
entire cross section of the beam. This is the case in the
polarimeter section of the magnetograph but not in the

foreoptics.




Coordinate System

The Jones matrix is defined relative to an arbitrary x and y
coordinate system. Since these coordinates have been defined for
the Jones vector, the coordinate system of the Jones matrix is
defined in terms of the Jones vector coordinates.

It is often desirable to align the Jones vectors coordinates
with the s and p planes of an optical interface. Only for plane
surfaces does the orientation of the s and p planes remain fixed
across the surface. For nonplanar surfaces, it is necessary to
maintain two sets of coor@inates, the global x and y coordinates
with respect to which the Jones matrix is defined, and a local s
and p coordinate for each individual point on the interface. The
local s and p coordinate system will have its x' and y' axe§
aligned with the local s and p planes of the surface for the
evaluation of Jones matrices at given surface coordinates. Then,
these local Jones matrices will be rotated to bring all the

matrices into the global coordinate system.

Pauli Spin Matrix Basis and the C Vector

The Pauli spin matrices form a most useful basis for
interpreting the Jones matrix "space" and define a basis set for
the JJ matrix. The identity matrix, ¢(0) and the Pauli spin

matrices, o(l), o(2), and o(3), are defined by:




c(0) a(l) a(2) a(3)

SIEAEIEY

An arbitrary Jones matrix will be expressed as,

3
JI = & c(k) o(k). ’ y

The c's are formed into a four element complex vector, the

"C vector". The C vector expression
C=1[c(0), c(l), c(2), c(3) 1 ’

an equivalent representation of the Jones matrix,

JJ c(0) a(0) + c(1l) o(2) + c(2) o(2) + c(3) a(3)

c(0) + c(1) c(2) - ic(3)
c(2) + ic(3) c(0) - c(1)

When necessary, p and ¢ refer to the amplitude and phase portions

of the C vector elements,

C = [p(0) exp(T¢(0)), p(1l)exp(Te(1l)), p(2)exp(T9(2)), p(3))exp(Tr(3))]

The elements of C are related to the Jones matrix elements by the

equations:




c(0)

(3(1,1) + j(2,2))/2 , <c(1)
(j(lrz) + j(zll))/z ’ c(3)

(j(1,1)=- j(2,2))/2 ,

c(l) (3(1,2)= j(2,1))/(=-27).

The elements of the Jones matrix are related to the elements of C

by the equations:

j(i,1)
j(2,1)

c(0) +c(l)y , j(1,2) c(2) - 1 c(l) ,

c(2) + 7 c(3) , j(2,2) c(0) - c(l) .

- The C vector, like the Jones matrix, has eight degrees of
freedom. Table C-2 contains a description of the meaning of the

real and imaginary parts of the ¢ vector elements.

TABLE C-2. Interpretation of the C Vector Elements

Matrix Coefficient Meaning
a(0) p(0) Amplitude Absorption
g(0) $(0) Phase Phase
ag(l) p(l) Amplitude Linear Polarization along Axes
a(l) (1) Phase Linear Retardance along Axes
o(2) p(2) Amplitude Linear Polarization, 45 deg
o(2) o(2) Phase Linear Retardance, 45 deg
o(3) p(3) Amplitude Circular Polarization

a(3) . 6(3) Phase Circular Retardance




The Jones Matrix and C Vectors for Specific Polafizers

Tables of Jones matrices for various polarizers are found in
Azzam and Bashara (1977, Section 2.2.3), Hecht and Zajac (1974,
Table 8.6), Shurcliff (1962, Appendix 2), and Theocaris and
Gdoutos (1979, Table 4.1). A table listing of the Jones matrices
and C vectors for the most common polarizers and retarders is

given in Chipman (1987, Table.6). v

The Meaning of the Coefficients of the C Vector

The primary reason for the introduction of the C vector is
to simplify the representation of polarizers. Each of the
elements of the C vector represents a specific type of polarizer
behavior.

The real parts of the C vector all correspond to amplitude
effects, absorption and dichroism. The phase portion of the C
vector represent phase effects, propagation and birefringence.
The first element, c(0)=p(0)exp(is(0)), is the coefficient of the
identity matrix. Thus it must represent effects that are
polarization state independent; these are amplitude and phase.
The last element, c(3)=p(3)exp(i¢(3)), multiplies the spin matrix
g(3) which is rotation invariant. Thus the c(3) term represents
the circular polarization effects; p(3) describes circular
polarization or circular dichroism and ¢(3) describes circular
retardance or circular birefringence. The remaining two
elements, é(l) and c(2), represent linear polarization and linear
retardance. Linear terms require two degrees of freedom:

magnitude and orientation. Thus, p(l) and p(2) characterize
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linear polarization or linear dichroism, p(l) in the 0 degrees
and 90 degrees directions, p(2) in the + and -45 degrees
directions. Likewise, ¢(1l) and ¢(2) characterize linear

retardance or linear birefringence.
Rotated Polarizers

If a polarizer with Jones matrix JJ is rotated through an
angle 8 (positive if counterclockwise), the Jones matrix becomes

JJ'(8) = R(9) JJ R(-9).

The R(9)'s are the Jones rotation matrices:

cos(9) -sin(9)
R(8) =
sin(9) cos(8)
|

The Jones rotation matrices obey the relations,

R(a) R(b) = R(b) R(a) = R(a+b)

and,

R(a) R(-a) = o(0).

The identity matrix is invariant under rotation;

R(8) o(0) R(-8) = a(0).

Under rotation, o¢(l) and o(2) couple into each other;




R(8) o(l) R(=-98) = o(l)cos(28) + o(2)sin(298)

R(98) o(2) R(=-8) = =-0(2)sin(28) + o(2)cos(26).

a(3) is invariant under rotation; R(8) o(3) R(-96) a(3).
Having established the polarization calculus which describes the
polarization optics, we now apply these matrices to the SAMEX

optical system.

Instrumental Polarization

Two types of polarization calculations can be performed for
the SAMEX magnetograph: iﬁstrumental polarization and transmitted
light polarization. The first is the calculation of the
polarization associated with ray paths through an optical
system. This determines the instrumental polarization function
as a function of pupil coordinates for a specified object
point. The other type of calculation determines the state of

" ary sl
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a aticn, such as a Jo

pclariza ies vector, transmitted by the system
along a given ray path for a specified input polarization

state. By iterating this process, the Jones vector as a function
of position in the exit pupil is calculated. This Appendix deals
only with the instrumental polarization calculation. Once the
instrumental polarization function for the system is known, the

transmitted Jones vectors are readily determined for all input

polarization states.




Polarizers are optical elements which divide an optical beam
into two parts (Jones vector) and transmit those parts with a
different transmission coefficient and a different phase. The
two parts of the beam are referred to the eigenvectors or by the
more descriptive term, "eigenpolarizations."™ The two
eigenpolarizations are orthogonally polarized and are transmitted
by the polarizer with no alteration of their polarization states;
only the intensity and phase changes.

The word polarizer will be used to refer to both polarizers,
such as dichroic or prism type, which have a different
transmittance for the two eigenpolarizations, and retarders,
which have equal transmittance but a different phase change for
the polarizations. 'Polarized Light' by Shurcliff(1962) is the
standard reference on the types of polarizers, their definitions,

parameters and properties.

ransparent Systems
The SAMEX foreoptics are highly transparent and weakly
polarizing and the following calculational method is optimized
for this case. The ideal Jones matrix for a ray through a

transparent nonpolarizing system is

J3(ideal) = exp (id) [é ‘f—]

where d is the optical path length for the ray in radians. (The

complex value (—lﬁ@ is denote by 1). The Jones matrix operation

on the Jones vector, which is composed of the two orthogonal
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amplitude components, define the transmitted state of the ray.
The above ideal Jones matrix is the identity matrix, which
signifies that the system has no absorption or polarization.
Since this is the desired form of the Jones matrix for the SAMEX
foreoptics, the approach developed here obtains the instrumental
polarization function as a Taylor series of the system Jones
matrix in the ray coordinates about 3J(ideal). This approach is
easily modified for systems which are not highly transparent or
which contain strong polarizers by performing the Taylor series
about the Jones matrix for the ray down the optical axis. This

work deals primarily with this simpler version of the problem,

transparent systems, to streamline the SAMEX calculations.

S-P Coordinates

To handle problems involving light at nonnormal incidence at
curved optical surfaces, it is necessary to maintain two separate
coordinate systems: x-y coordinates and s-p coordinates. The x-y
coordinates are the global x, y and z coordinate system used to
describe the optical system. The optical axis of radially
symmetric optical systems coincides with the z axis.

The s-p coordinates are used to perform polarization
calculations with the SAMEX coatings which are angle of incidence
dependent. Most frequently, the functional form of the interface
polarization is known in s-p coordinates. Thus, the rational for
using s-p coordinates is that, typically, the Jones matrix for a
ray at an optical interface will be calculated in the s-p

coordinates. Then it will be rotated into the system x-y
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coordinates. Once all the Jones matrices for the ray at all
surfaces have been rotated into x-y coordinates, they can be -
cascaded to give the instrumental polarization along that ray
path in the system x-y coordinates.

The s-p coordinates are based on the concept of the s.and jo!
planes. Consider light with unit wave vector k (normalized to
one) incident at a surface wi}h normal n. The plane of
incidence, or "p-plane" is the plane Qﬁich contains k and n. The
plane perpendicular to the plane of incidence which contains k is
the "s-plane". Two unit vectors perpendicular to k are defined

to form an orthonormal basis for this coordinate system.

Instrumental Polarization

All optical elements display variation of their Jones
matrices as the angle of incidence changes. Further, this always
involves more than just a variation in the intensity and phase of
the light; it also involves polarization and retardance. A fine
optical element used in a transparent system will not display
polarization effects at normal incidence; it may show some
absorption, reflection loss or phase shift, but not polarization
or retardance.

The Jones matrix can be decomposed and can be expressed as

JJ c(k) a(k),

L
W

0

10 10 01 0 -7
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where o(k) are the identity matrix and the Pauli spin matrices
which describe the specific polarization sﬁate. The c(k) defined
a vector which then described the polarization properties of the
element. At an angle of incidence i, the C vector will have the

form
ci = (c(oli)lc(lli)lc(zli)Ic(__3l.i)) =

(0(0,1)eT¢(0:1) 51, 1)e (1 1), e2,1)eT0(2/1), 5(3,1)eTo(3,1),

where each component has an amplitude (p) and a phase (4¢) part.
The functional dependences of the C vector coefficients are
calculated from the Fresnel equations and coating equations for

the interface.

Weak Polarizers
A weak polarization element is defined as a polarizer having

a C vector such that for some range of 1i:
)
lc(o, ) |2 > (Je(r,i)]2 + |et2,0)|2 + |c3,10]%) “.

Such a polarization element transmits light in a polarization
state similar to the incident state with only weak coupling into
other polarization states. The polarization behavior is
dominated by transmission with only traces of polarization or
retardance. Any polarization present is at the few percent level
or less, such that any linearly polarized incident beam has a

transmission coefficient which varies a few percent or less with

|9



orientation. Similarly, the retardation is degrées or less, far
less than a quarter wave (7/2) retarder. Near normal incidence,
metals in reflection (e.g. telescope mirrors) and dielectric
refracting interfaces (e.g. relay lens) are weak polarizers. In
addition, near normal incidence, anti-reflection coated lenses
used in transmission and metals with reflection enhancing
coatings are typically weak polarizers for wavelengths near the

]

thin £ilm design wavelength.

Amplitude Transmission Relations

The amplitude transmission equations for an interface are
the equations which relaté the amplitude and phase of the
electric fields, E, at an interface. The most general amplitude

transmission equations for a nonscattering linear interface are:

E'(s) a(ss) E(s) + a(ps) E(p)

E'(p) a(sp) E(s) + a(pp) E(p)

where for this section, the plane of incidence will be aligned

with the y axis. This equation is equivalent to the Jones matrix

equation,
E'(s) a(ss) af(sp) E(s)
E'(p) a(ps) al(pp) E(p)

For interfaces whose eigenpolarizations are linear polarized

light oriented parallel and perpendicular to the plane of

16



incidence, the transfer of energy across the interface is
separable into two uncoupled components which can be written in

the form:

E'(s) = a(s) E(s) p(s) exp(ie(s)) E(s)

E'(p) = a(p) E(p) p(p) exp(idé(p)) E(p).

[y

The amplitude transmission coefficients a(s) and a(p), or in
polar coordinates, p(s), ¢(s), o(p), and ¢(p), are determined by
the Fresnel equations for the interface. The type of energy
- transfer equation, where the s and p equations are separable, is
a "separable amplitude transmission relation."™ Only polarization
elements with linearly polarized light as the eigenpolarizations
have the energy transfer equations in the separable form. Tﬁis
includes all the elements and coatings used in the SAMEX
foreoptics.

The separable amplitude transmission relations correspond to
a diagonal Jones matrix in s-p coordinates. The Jones matrix and
C vector for an amplitude transmission interface in s-p

coordinates are:

[ a(s,i ) 0 1

JJ(1i)

0 a(p,i)

and,

v7



c =1/2 ( a(s,i)+a(p,i), a(s,i)-a(p,i), 0, 0 1.

Taylor Series Representation of SAMEX Coatings

In optical aberration theory, expressions for the optical
path length of ray segments through the the optical system are
obtained by performing a Taylor series expansion on Snells law,
the law of reflection and the grating equation, to obtain
expressions for the optical path length as a power series

expansion in the ray coordinates. Thus Snells law,
n sini =n' sin i' ,

is rewritten for i' as,

[
"

arcsin{ (n/n') sin i ]
or

(n/n') i + [(n/n")3) - (n/n*)1i3/5 + o(id).

pte
]

The polarization aberrations are generated in an analogous
fashion. To obtain the variation of the Jones matrix in the exit
pupil of a system, the appropriate coating equations are required
in Taylor series form. For radially symmetric optical systems,
expansions in the angle of incidence about normal incidence are
used.

An isotropic interface appears unchanged as it is rotated
about the surface normal. Ideally, and to a first approximation,

the SAMEX coatings are isotropic. So, for any isotropic

\g
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interfaces the Fresnel equations ére even functions since the
surface, does not distinguish between angles of incidence of +i
and -i.

An even function contains only even terms in its Taylor
series expansion about the origin. Thus, the Taylor series
representations of the coating equations has the form, where f(i)
is a reflection or transmission coefficient, of

£(i) = £q + £, 12 + £, i% + ...,
where

Ng,
£ = l/n! 9_%(?1—)'1:0'
di
For weakly polarizing interfaces described by amplitude
transmittance relations, the Taylor series forms of the Jones

matrix and C vector are calculated as follows. First, the Taylor

a2 AaU0ia -e LT LTIINaITU 2L S

series expansion is determined for the amplitude transmission

relations:

2

a(s,1i) ag(s) + aj(s) 1% + ay4(s) i

2+a4(p) i4+ * e 0y

a(p,i) = ag(p) + a(p) i

Then, the Taylor series expansion about i=0 in s-p coordinates

for the Jones matrix is,




an(s) 0 as(s) 0
33(i) = + i2 2

0 ag(p) 0 as(p).
The corresponding C vector expansion in s-p coordinates is
C = [ c(0,00+c(0,2)i% + ... , <(1,0)+c(1,2)i%2 + ... , 0, 0]

where the nth order c-vector component is given by

c(0,n)

1/2 (ap(s) + aj(s))

c(l,n) 1/2 (ap(s) = a,(s)).

A matrix equation to calculate c(0,n) and c(l,n) from thin film
program results is given by Chipman (1987). For the SAMEX
coatings characterized by separable amplitude transmission
relations, the diagonal and circular polarization components,
c(2,n) and c(3,n), are always zero. The normalized C vector for

the separable amplitude transmission relations is

C = t [ 1+d(0,2)i% + ... , d(1,0)+d(1,2)i2 + ... , 0, 0 ]

where

t= ¢(0,0) and d(k,n) = c¢(k,n)/c(0,0) .

The Jones matrix and C vector for coordinates other than the
s-p coordinates are obtained from the polarization rotation

operation. For example, the s-p coordinates are rotated with
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respect to the x-y coordinates by 8, the orientation of the plane
of incidence. The Jones matrix in x-y coordinates JJ(x,y) is
related to the Jones matrix in s-p coordinates JJ(sp) by the

equation

JJ(x,y) = R(-8) JJ(s,p) R(8).

The Taylor series coefficients for the Fresnel equations
which govern an uncoated dielectric or metal surface have been
determined for use in determining the instrumental polarization
of a conventional Cassegra@n telescope. The notation a(s) and
a(p) will refer to either the reflécted or transmitted amplitude
transmission coefficient, while t(s), t(p), r(s) and r(p) are
used to refer unambiguously to the transmitted or reflected‘

components. The Fresnel amplitude transmission equations are:

t(s,i) = ( 2 cos i sin i')/(sin(i+i"))
= (2n cos i)/{n cos i + n'cos i')
t(pei) = ( 2 cos i sin i')/(sin(i+i') cos(i-i"))
= (Zﬁ cos 1)/( n' cos i+ n cos i')
r(s,i) = (-sin(i-i'))/( sin(i+i') )
= (ncos i-n'"cos i')/( ncos i + n' cos i')
r(p,i) = ( tan(i-i'))/(tan(i+i'))

(n* cosi-ncos i')/( n'" cos i +n cos i') .




The Fresnel equations depend on the ratio of the indices, n énd
n', but not on the values of the refractive indices

individually. This relative refractive index ratio is defined as

N = n/n' .
The Fresnel equations are equally valid for real n, corresponding
to transparent media, or complex n, corresponding to absorbing
media or metals.

The second order Taylor series expansions for the Fresnel

amplitude coefficients about i=0 are:

t(s,1) = (2 N)/(N+1) + i2 (N(N-1))/(N+1) |,
t(p,i) = (2 N)/(N+1) + i2 (N2(N-1))/(N+1) ,
r(s,i) = (N-1)/(N+1) - i2 (N-1)/(N(N+1)) |,
r(p,i) = (N=1)/(N+1) + i2 (N-1)/(N(N+1)) .

The direct method for calculating the Taylor series
coefficients of a coating series given in the last section are
impractical for multilayer coatings due to the complexity of
calculating the partial derivatives of the appropriate amplitude
transmission equations. The Taylor series coefficients can be
obtaine§ numerically from the s and p amplitude transmissions
evaluated at a series of angles of incidence. An algorithm to
sixth order has been given by Chipman (1987). The algorithm was

used with the thin film design programs Filmstar and Films to




obtain the Taylor series expansions of the transmitted and
reflective amplitudes as a function of the angle of incidence for

use in the polarization aberration calculations for SAMEX.

CASCADED WEAK POﬁARIZBRS

In this section the Jones matrix describing the instrumental
polarization for light propagating along a ray path through the
SAMEX foreoptics is derived. Results are also given for the
instrumental polarization associated with paraxial rays as
functions of the Taylor series of the C vectors representing the
optical interfaces. The notation used in this section is

compiled in Table C-3.

Table C-3. Notation for Section

a0

o~
”~
~

C vector

d{k) coefficients rotated intoc arbitrary plane o
incidence

Normalized C vector components in s-p coordinates
Angle of incidence

Jones matrix

Pauli spin matrix index: 0,1,2,3

Length of a ray segment

Surface index

Total number of surfaces

Orientation of the plane of incidence

Absorption or polarization coefficient

Pauli spin matrix

Normal transmittance

p(k) Phase or retardance coefficient

£
i

L‘A
=

rcan <00 QXGHO
~

Subscript Ordering: k., 1, q.

For example, d(1,2,3), is the coefficient for:

the o(l) polarization basis state, that is second
ogder in the angle of incidence Taylor series,

i4, for g=3, the third interface.




Consider an optical system with Q optical interfaces
numbered in the order encountered from g=1 to Q. No symmetry
regarding the optical configuration is assumed. Light propagates
along a specified ray path such as would be calculated by an
optical ray trace calculation. At each interface some
polarization is introduced due to diffgrences in the optical
constants across the interface. In aédition, polarization is
associated with the ray path between interfaces due to optically
active crystals, dichroism, birefringence, gradient index
materials or other polarizing mechanisms. But for the
polarization analysis for SAMEX foreoptics, polarization

associated with the optical path between interfaces was zero.

Therefore only interface induced polarization is considered here.

Homogeneous Optical Systems

A homogeneous interface has optical properties independent
of spatial coordinates on the interface. The Jones matrices are
functions only of the angle of incidence, plane of incidence, and
optical properties of the interface media, JJ = JJ(i,é,n,n') and
similarly C = C(i,8,n,n'). The foreoptics and polarimeter
sections of the SAMEX Magnetograph are homogeneous optical
systems.

Likewise, a homogeneous medium has optical properties
independent of spatial coordinates. An anisotropic crystalline
medium is homogeneous if it consists of a single crystal. The

refractive index varies with direction but not with position.




Radially Symmetric Systems of Lenses, Mirrors and Coatings

The polarization properties ofzoptical systems comprised of
lenses, mirrors and "fine" coatings will be developed. A
radially symmetrib optical system has an axis of symmetry, the
optical axis. It is assumed that the optical elements and
materials used in transmission are highly transparent and
nonpolarizing, as is usual in lenses. The polarization
contribution from the path lengths through highly transparent
elements is small relative to the polarization arising at the
interfaces and is neglected.

The polarization associated with ray paths near the optical
axis, or in the paraxial regime, will be derived. For this
paraxial development to be accurate, it is only necessary tﬁat
the angles of incidence are small enough that the polarization
associated with the interfaces is adequately approximated by a
second order expansion of the C vector as a function of the angle
of incidence. For an uncoated lens or mirror, this approximation
is generally valid for i < 30 degrees. Calculation of the fourth
and higher order coefficients allows estimation of the accuracy
of these second order equations. The paraxial region for this
polarization analysis is typically orders of magnitude larger
than the paraxial region of geometrical optics (the region where
the fourth and higher order wavefront aberrations are
negligible.)

Homogeneous and isotropic interfaces do not display

polarization at normal incidence. There is only an amplitude and




Homogeneous and isotropic interfaces do notidisplay
polarization at normal incidence. There is only an amplitude  and
phase change which is represented by the complex number, t, the
normal amplitude transmittance. An isotropic interface such as a

lens, mirror or coating has a C vector Taylor series in s-p

coordinates (8 = 0) of the form

cli,e)f, o o =t [1,0,0,0] + i% t [d(0,2),d(1,2),0,0] +
+ 1% t (d(0,4),d(1,4),0,0] + ...

For an arbitrary orientation 8 of the plane of incidence, the C

vector is

c(i,8) = t [1,0,0,0] + i% t [c(0,2)t,c(1,2)t,c(2,2)¢t,0]

+ i% v [c(0,4)t,c(1,4)t,c(2,4)t,0] + ...

where the c's are determined from the d's by a rotational change

O

£ basis. Since homogeneocus and isotropic

4>

nterfaces do not
display circular retardance or circular polarization, o¢(3) is not

included to simplify the mathematics.

The C Vector for a Paraxial Ray

The SAMEX instrumental polarization will be analyzed by a
paraxial optics development. Consider a paraxial ray path
through an.optical system from surfaces g=1 to Q with angles of
incidence, i(q), and orientations of the plane of incidence,

8(q). The Jones vector associated with the axial ray (down the
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" optical axis,) 1(q)=0 for all q, is
JJ = t(q) o(0) t{g=1l) o(0)...t(2) o(0) t(1) of(0) = T o (0Q)
where

T =

Q
L4
q =

1 t(q).

The complex amplitude transmittance down the axis, T, is the
product of the normal incidence complex amplitude transmittances
.at each surface.

The Jones matrix assocliated with a ray at interface q can be
expressed in terms of the expansion of the interface Jones matrix

as

JJ(i,v,q) = t(q) [o(0)+ iz(q)(C(O,Z,q)0(0)+C(1,2,q)0(1)+C(2,2,q)0(2))
+ i4(q)(C(0,4,q)a(0)+C(1,4.q)c(l)+C(2,4,q)0(2))+--.]

The Jones matrix associated with the entire paraxial ray
path resulting from keeping terms to second order at each
interface is (where X represents multiplication carried onto the

next line)

33 = t(q)(a(0)+ i2(q)c(0,2,q)a(0)+c(1,2,q)a(1)*c(2,2,q)a(2)) X
t(q4l)(o(0)+iz(q—1)(c(O,Z,q-l)c(O)+c(1,2,q-l)o(l)+c(2,2,q—l)c(2))x..
£(2)(a(0)+12(2)(c(0,2,2)a(0)+c(1,2,2)a(1)+c(2,2,2)0(2))X
t(l)(a(0)+i2(l)(c(0,2,l)0(0)+c(1,2,1)0(l)+c(2,2,1)0(2)).




Associated with each interface are four terms. Carrying out all
the multiplications leads to 4Q terms, all in even powers in i.
Collecting terms of equal power in i, there is one term at
zero'th order and 3Q terms at second order. If i is assumed
small, the large number of higher order terms are of diminishing
importance. Collecting zero.and second order terms in JJ, and

JJ, the expression for JJ is

33y + JI5 = T a(0) + T o(0)

1O

i2(q)c(0,2,q)

q=1

+ T o(l) i2(q)e(1,2,q)

H 10

q=1

+ T a(2) i2(q)e(2,2,q9).

™0

q=1

Since no polarization or retardance was assumed on axis, the

contributions to the second order polarization for this ray are
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taking place at second order for the o¢(1l) term is of the form

iz(q)a(l)a(O)o(O)a(O)...0(0) + a(O)iz(q-l)0(1)0(0)0(0)...0(0) +

cee + 3(0)0(0)a(0)0(0)...12(q)a(1)

where the c-dependence is not shown explicity.
This equation contains the useful result that, when no
elements display polarization or retardance at normal incidence,

as in the SAMEX foreoptics, there is no order dependence in the




second order terms. Only one non;identity matrix term occurs in
each second order matrix product. The second order polarization
associated with the paraxial ray path is obtained by a simple
summation of second order polarization contributions at each
intercept. Chipman (1987) gives a complete account of thfs

derivation.

Paraxial Optics Geometry

The polarization aberrations for SAMEX are a description of
the polarization behavior of an optical system expressed as an
expansion about the center of the object and the center of the
pupil. Thus it is appropriate and convenient to obtain the
derivations from a paraxial ray trace; appropriate, because
understanding the instrumental polarization near the center of
the pupil and image is key to understanding instrumental
polarization in general; convenient because the paraxial ray
trace is linear, and thus easy to manipulate.

The paraxial ccordinate system used is a normalized right
handed coordinate system. The z axis is the optical axis of a
rotationally symmetric optical system. Light initially travels
in the direction of increasing z. Figure C-1 shows the notation.

For a rotationally symmetric system, the object can be
located on the y axis without loss of generality. The object

coordinate H is normalized such that H = 0 in the center of the

field (on the optical axis) and H = 1 at the nominal edge of the
field of view.

The location where a ray strikes the entrance pupil is




PUPIL

Figure C.1. Paraxial coordinate system. The paraxial system is

a normalized right-handed coordinate system. The z axis is the
optical axis of a rotationally symmetric optical system;.light
initially travels in the direction of increasing z. Rays through
an optical system are characterized by ray coordinates at the
object and entrance pupil. H is the normalized object coordinate,
p is the normalized pupil radius, and ¢ is the polar angle in the
pupil measa¥red counterclockwise from the y axis. The normalized
Cartesian coordinates in the pupil are x and y. The chief and
marginal rays are also shown.




specified by the polar pupil coordinates p and ¢. o is

normalized such that at the edge of a circular pupil p» = 1 .
The angle ¢ is defined here as it is in much of geometric optics,
and in defiance to most analytical geometry, as being zero on the
'y axis' and increasing counterclockwise. Normalized Cartesian
pupil coordinates x and y can be used. They are defined as:

X = p sin(¢) and y = p cos(4).

Expressions for the anglé of incidence i and the orientation
of the plane of incidence 4 of a ray at a éiven surface g will be
expressed in terms of the marginal i(m,q) and chief ray i(c,q)
angles of incidence at that surface. Details of the derivation
may be found in Chipman ( 1987, section D). Note, however, for a
radially symmetric system the angle of incidence should be a
function of Hz, pz, and Hpcos¢ since the function should be .
invariant to rotation of the system about the optical axis and
must give the same result when -x is substituted for +x where
X = pcosd.

Assume that a paraxial ray trace has been performed for a
specific system and that i(m,q) and i(c,qg) have been
calculated. A ray from normalized object coordinate H which
passes through pupil coordinates p and ¢ will have an angle of
incidence i(q) and orientation of the plane of incidence 6(q) at

surface q equal to:

i(a) = (8%1%(c,q) + 2Hp cos(s) i(c,q) i(m,q) + o2 i%(m,q)] 72

o = sin~! [p sin(e) i(m)/|i]1 .

()



Figure C-2 shows the paraxial angle and plane of incidence
for three field angles. The magnitude of the angle of incidence
is represented by the length of the lines. The orientation of
the lines corresponds to the orientation of the plane of
incidence. Note that off axis, the pattern is a shifted version
of the on axis pattern. The incidence angle is given by the
pupil coordinate (p,9) and tﬁé image coordinate (H) since these

coodinate define the optical path of a single ray.

POLARIZATION ABERRATIONS
Introducti.n

This section derives the polarization aberrations for SAMEX
as a Taylor series description of the instrumental polarization
associated with paraxial rays through the foreoptics.
Polarization aberration is a description of the polarization
behavior of an optical system expressed by a expansion about the
ble C-4 gives an
overview of polarization aberration theory. The results are
obtained in a form very similar to the wavefront aberrations. 1In
particular, terms closely related to defocus, tilt, piston error
as well as the Seidel and higher order aberrations can be
associated with all eight of the basis Jones matrices. Since
polarization effects are typically orders of magnitude smaller
than wavefront effects, fewer terms are needed for a sufficient

description. A method of calculating aberration coefficients for

specific systems is developed in the next section.
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Figure C.2. Paraxial angles and plane of incidence for three
field angles. The magnitude of the angle of incidence is
represented by the length of the lines. The orientation of the
lines corresponds to the orientation of the plane-of incidence.
Note that in the off-axis cases, the pattern is a shifted version
of the on-axis pattern. ’




Table C-4. Polarization Aberration Theory Outline

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Jones Vector

The Jones vector is a complex
2-component vector describing
the electromagnetic field.

Paraxial Ray Trace

The angle of incidence, i, of any
ray can be written in terms of the .
angle of incidence of the chief

and marginal rays, i(c) and i(m).

Coating Calculation

Thin film design programs
calculate the amplitude
transmission coefficients for s
and p light, t(s,i) and t(p,i).

Taylor Series Representation

The amplitude transmission
coefficients, t(s,i) and t(p,i),
are transformed to with a Taylor
series expansion about normal
incidence.

Jones Matrix for an Interface

econd order Jcones matrix for
an interface can be written in terms
of three Polarization Aberration

terms represented by coefficients.
Aberrations Sum for System

The second order polarization
aberrations for the system is

the sum of the aberration
contributions of each interface.

Polarization Accuracy

Summarize the performance of the system
with a single number, the polarization

accuracy (Ap). This is the maximum
fraction of light coupled into the
orthogonal polarization state. This

Ex

.EY

i(c), i(m)

t(s,i), t(p,i)

tls,i) = t (1 + t(s,2)i% + ...)

tlp,i) = to(1 + t(p,2)i% + ...)

P(1,0,2,2,q), P(1,1,1,1,q),

P(IIZIOIOJQ)

P(1,0,2,2) = ; P(1,0,2,2,q)
P(1,1,1,1) =§ P(1,1,1,1,q)
P(1,2,0,0) = ; P(1,2,0,0,q)
A
p

occurs at the edge of the field of view,.




The Polarization Aberration Expansion

The wavefront polynomial expansion describes the variation of
the optical path difference through an optical system as a function
of ray coordinates. A closely related expansion will be presented
for all four basis polarization matrices o¢(0), o(l), o(2), o(3).
The polarization aberration expansion for radially symmetric
systems uses a very similar polynomial expansion to describe all
eight basis polarization vectors. Tﬁé principal difference is a
modified form for the linear polarization and linear retardance
terms since these involve both a magnitude and an orientation.

The eight forms of polarization behavior can be
characterized by four complex numbers, for example, the four
elements of either the Jones matrix or the C vector. We
introduce a new set of complex parameters, the complex
polarization aberration coefficients which gives a description of
the polarization behavior of an optical interface. It should be
emphasized that the amplitude and phase of the coefficients are
generally unrelated. They refer to different aspects of the
instrumental polarization. The amplitude part of the coefficient
describes amplitude and polarization effects while the phase part
describes phase and retardance. When necessary the amplitude and
phase of the polarization aberration coefficient, P, will be

denoted by A and ¢ where,

P = A exp(1 @) .




The complex aberration coefficient is written Eo contain
polarization, amplitude, effects, retardance, and phase effects
in a single term. The following polarization aberration
expansion for zeroth and second order is used. The subscripts

are defined as follows:
P(k,u,v,w) = A(k,u,v{w) exp(Té(k,u,v,w)) ,

where: k is the type of polarization behavior,
u is the order of the H dependence, HY,
v is the order of the p dependence, oY, and,

w is the order of the ¢ dependence, (cos(4))¥.

The indices u, v, and w are used exactly as they are for the
wavefront aberrations, as shown in the next section.

The polarization aberration expansion of the Jones matrix
for the SAMEX foreoptics is

JI(H,p,9) c(k,H,,r,p) a(k)

0

"
([ 3 VS

k

P(k,u,v,w) HY 5 V cos¥ (¢) o(k).

[]
I W

I L I
0 uvwvaw
Here we define the aberration coefficients as an expansion of the
Jones matrix in terms of the ray coordinates p, ¢, and H.

The C vector coefficients in this polarization aberration

expansion are:




Amplitude and Phase term:

c(0,H,p,4) = A(0,0,0,0) + A(0,2,0,0)H2 +
+ A(0,1,1,1) H p cos(é) + A(0,0,2,0) p°
+ T7(#(0,0,0,0) + #(0,2,0,0)H2

+ 0(0,“1,1,1)['1 DACOS(¢) + 9(0,0,2,0) 92)0

Linear Polarization and Retardance terms:

c(1,H,0,4) = A(1,0,0,0) + A(1,2,0,0) H? +
+H p (A(1,1,1,1) cos(s) - A(2,1,1,1) sin(¢))
+ 0%(a(1,0,2,0) cos(2¢) - A(2,0,2,0) sin (24))
+ 7 (#(1,0,0,0) + #(1,2,0,0) HZ +
Hp (#(1,1,1,1) cos(¢) - #(2,1,1,1) sin(¢))+

02(9(1,0,2,0) cos(24) - #(2,0,2,0) sin(24))) .

Diagonal Polarization and Retardance terms:

c(2,4,0,4) = A(2,0,0,0) + A(2,2,0,0) H? +
+ H p (A(2,1,1,1) cos(s) + A(1,1,1,1) sin(¢))
+ 0% (A(2,0,2,0) cos(24) + A(1,0,2,0) sin (24))
+ 7 (9(2,0,0,0) + #(2,2,0,0) HZ +
H o (9(2,1,1,1) cos(4) + &(1,1,1,1) sin(¢))+

0% (4(2,0,2,0) cos(2¢) - 8(1,0,2,0) sin(2¢) ))

Circular Polarization and Retardance terms:




c(3,H,0,4) = A(3,0,0,0) + A(3,2,0,0)H% +
+ A(3,1,1,1) H p cos(4) + A(3,0,2,0) o2
+ 7 (4(3,0,0,0) + #(3,2,0,0)H2

+ 0 (3,1,1,1)H o cos(¢) + #(3,0,2,0)p2),

There are thirty two terms in this polarization aberration
expansion to second order arising from four terms in each of the

eight degrees of freedom of the Jones matrix. The terms may be

grouped as follows:

A(O,u,v,w)
A(l,u,v,w)
A(2,u,v,w)
A(3,u,v,w)
®(0,u,v,w)
o(l,u,v,w)
®(2,u,v,w)
¢(3,u,v,w)
P(k,0,0,0)
P(k,2,0,0)
P(k,1,1,1)
P(k,0,2,0)
P(k,0,2,2)

The names of the wavefront aberrations: piston, quadratic

Amplitude terms

Linear polarization terms
Diagonal polarization terms
Circular polarization terms
Wavefront or phase terms
Linear retardance terms
Diagonal retardance terms
Circular retardance terms
"Constant Piston" terms
"Quadratic Piston" terms
"Tilt" terms

"Scalar Defocus" terms

"Vector Defocus" terms

piston, defocus and tilt, are used here in an extended sense,



describe variations of components of the Jones vector which share
the same functional dependences as the wavefront aberrations.
Defocus is a p2 variation of a parameter. Tilt is H p cos(¢)
variation. Quadratic piston is H2 variation. Thus, "amplitude

defocus" means a bz

amplitude variation. Likewise the "circular
retardance tilt" is a the H p cos(¢) circular retardance
variation, and so on.

This polarization aberration exp;nsion is an equation which
describes all possible second order variations of the Jones
matrix, just as the second order wavefront aberration expansion
spans the set of all second order wavefront variations. Thus the
polarization aberration expansion characterizes quadratic
variations of all forms of wavefront, amplitude, polarization and
retardance.

This polarization aberration expansion is a summation of
terms in the different Pauli spin matrix components, not a
product. Thus the four C vector elements can be pictured as
acting in parallel, almost side by side in the aperture, but not
in series. Each term describes an amount of a particular form of
polarization, independent of the other contributions.

An "aberration term" is to be considered as containing all
the algebraic terms in the expansion with the same coefficient.
Most of the coefficients occur only once and the aberration term
contains only one algebraic term. The exceptions are the terms,
A(1,1,1,1), ¢(1,1,1,1), A(1,0,2,2), ¢(1,0,2,2), A(2,1,1,1),
$(2,1,1,1), A(2,0,2,2), and ¢(2,0,2,2). These aberration terms

have components both along the axes and at 45 degrees.

3



3

With SAMEX, the principal concerns are with the linear
piston, linear tilt and linear defocus terms, both in
polarization and retardance. These are going to be the largest
terms present which corrupt the incident polarization state.
.These values are given in the Table 19 for SAMEX.

For a detail discussion of the physical meaning of the
polarization aberration coefficients see Chipman (1987), however
a discussion of the orgin of tilt and.piston, P(0,2,0), P(1,1,1),
and P(2,0,0) terms is included below.

A distinction is made between scalar and vector
aberrations. The wavefront aberrations are scalar aberrations,
single valued functions of object and pupil coordinates. The
linear polarization and linear retardance aberrations are vector
aberrations since a magnitude and orientation is associated with
these at each point. Amplitude, circular polarization and
circular retardance aberrations are scalar since they are single
valued and range positive and negative.

Figure C-3 (top) shows the chief and limiting rays at an
interface for objects on axis and at the edge of the field of
view. Figure C-3 (bottom) is a plot of the value of the angle of
incidence along the y axis as a function of p. Tilt terms
naturally occur because as the object point moves off axis, the
angle of incidence increases at one edge of the beam and
decreases at the other edge. Tilt contains the first order
portion of this correction.

Figure C-4 shows the off-axis angle of incidence squared and

the decomposition of this into defocus, tilt and piston terms.




ANGLEOF  }i
INCIDENCE

PUPIL
e | COORDINATE

Figure 6:2 Angles of incidence for objects on and off axis. 1In.
the top frame, the chief and limiting rays at an interface are
shown for objects on the optical axis and at the edge of the
field of view. In the lower part of the figure, the angle of
incidence for rays incident along the y axis (in the paraxial
system) is plotted as a function of the normalized radius »p.
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Figure C.4 Quadratic effects of off-axis angles of incidence.
The squafe of the off-axis angle of incidence is shown along with
its decomposition into defocus, tilt and piston terms.




These terms are required to describe a quadratic variation whose

vertex is located at an arbitrary position on the y axis becahse

2

X< + (y-a)2 = x2

2 2

In this case since a is a linear function of H,

then the quadratic polarization variation becomes

c(x2 + (y—kH)z) c(x2+y2) - 2cykH+c k 2H2

P(0,2,0)p2 +P(1,1,1)2H p cos(é) + P(2,0,0)H2,

where P(0,2,0), P(1,1,1), and P(2,0,0) are the defocus, tilt and
quadratic piston aberration coefficients and the polarization
index is not shown. Tilt and piston terms arise naturally from
decentered defocus. Similarly, the fourth order wavefront
aberrations coma, astigmatism, field curvature and distortion

arise naturally from decentered spherical aberration, 94.




CALCULATION OF ABERRATION COEFFICIENTS

The method used to calculate the second order polarization
aberration coefficients for the SAMEX foreoptics given the C
vector power series for each interface is detailed in this

section.

Single Surface Aberrations for Amplitgde Transmittance Relations
For homogeneous and isotropic interfaces characterized by
amplitude transmittance relations, such as lenses, mirrors and
thin film coatings, the polarization aberrations at a interface
simplify considerably. At these interfaces the Fresnel equations
and related thin film equations are separable into s and p
components, so the Jones matrices representing the interface in
s-p coordinates are diagonal. The off-diagonal terms, diagénal
polarization ¢(2) and circular polarization ¢(3), are not
present. Further, with isotropic media, the s and p amplitude
transmission coefficients at normal incidence must be equal.

Thus the amplitude transmission functions can be expanded as:

a(s,i) = a(0)(l + a(s,2)i% +...) exp(T(d(0) + d(s,2)i2 +...)
=t (1+(a(s,?) + T d(S,2))i% +...) ,
a(p,i) = a(0)(l + a(p,2)i® +...) exp(T(d(0) + d(2,p)i2 +...)

t (1 + a(p,2) + T d(p,2)i% +...)

]

where:

Yo



t = a(0) exp( 7 4(0)).
The s-p coordinate Jones matrix expansion to second order is

a(s,1i) 0

JJ(1i)
0 a(Pri)

=t (o(0)(1 + A(2) + TD(2))i%) + o(1)(a(2) + Td(2))i?).

where
A(2) = (a(s,2)+a(p,2))/2,
a(2) = (a(s,2)-a(p,2))/2,
D(2) = (d(s,2)+d(p,2))/2,
d(2) = (d(s,2)-d(p,2))/2,

The s-p coordinate C vector Taylor series expansion to second

order 1is

C(i) = t (1,0,0,0) + i2 t (A(2)+7D(2), a(2)+7d(2), 0, 0).

The x-y coordinate C vector Taylor series for orientation of the

plane of incidence 8 is




c(i,8) = t(1,0,0,0) + i% t (A(2)+7D(2),

(a(2)+7d(2))cos(28), (a(2)+id(2))sin(28), 0).

The normal-incidence polarization aberration terms (the constant

piston terms) are zero:
r(1,0,0,0) = P(2,0,0,0). = P(310!0'0) =0 .

There is no polarization or retardance on axis, only the
amplitude and phase transmission factor t.

All terms for off-axis diagonal and circular polarization

are zero:
P(2,u,v,w) = P(3,u,v,w) = 0 .

Thus, the single surface C vector in paraxial coordinates is
obtained by substituting the paraxial representation of i(H,p,¢)

and v(H,p,¢) into C(i,v) yielding

c(0,H,p,8) = t + t d(0,2)[ H2 i2(c)

+ 2H p cos(¢) i(c)i(m) + pz iz(m)]

c(1,H,p,6) =t d(1,2) [ 2 i2(¢)

2

+ 2H p cos(4) i(c)i(m) + p° cos(24) iz(m)]

c(2,H,p,¢) = t 4(1,2) [ 2H p sin(¢) i(c)i(m)

+ 02 sin(2¢) i2(m)]



c(3,H,p,4) = 0.

Since there is no diagonal polarization, the only contributions
to c(2) arises from the rotation of linear polarization from the
s-p coordinates into the x-y coordinates.
Polarization Aberration Ccefficients for Systems
Since the polarization aberrations are only being evaluated
to second order in the angle of incidence, the difference between
spheres, parabolas, conics or other r:dially symmetric aspherics
does not occur at this order. The relevant shape parameter here
is only the vertex radius of curvature. The angle and plane of
incidence differences between these types of interfaces are the
same at second order but will differ at fourth order and higher.
For surfaces g=1 to Q, each surface is characterized by

three complex parameters from the normalized C vector expansion:

.d(0,0) = t(q), d4(0,2,q), and d4(1,2,q) .




The single surface polarization aberration coefficients are:

P(0,0,0,0,q9) = t(q)

P(0,2,0,0,q) = t(q) d(0,2,q) i%(c)
P(0,1,1,1,q) = 2t(q) d(0,2,q) i(c)i(m)
P(0,0,2,0,q) = t(q) d(0,2,q) i%(m)

P(1,2,0,0,q) t(q) d(1,2,q) .i%(c)

P(lllllll'q) Zt(q) d(IIZDQ) i(e)i(m)

P(1,0,2,2,q) t(q) d(1,2,q) i%(m).

The polarization aberration coefficients for the system are
calculated by chain multiplying the single surface polarization
aberration expressions and keeping terms to second order in H and
p. The zero and second order Jones matrices for the q'th

interface are:

JJO(QIHIPI¢) P(OIOIOIOIQ) 6(0) = d(OrOrQ) a(0) t(q) o(0),

JJz(QrHIDr¢) a(0) [Hz P(or?-roropQ) + 2H »p COS(¢)P(0,1,1,1,q)

+ 02 9(0,0,2,0,q) 1
+ o(1) [ H% P(1,2,0,0,q) + 2H p cos(#)P(1,1,1,1,q)
2

+ p“cos(2¢)P(1,0,2,2,q9) ]

+ o(2) [ 2H p sin(¢)P(1,1,1,1,q) + p2sin(24)P(1,0,2,2,q) ]




= ¢(0) t(q)d(0,2) [ H%i%(c) + 2H o cos(4)i(c)i(m)

+ 02im?2 )

+ o(1) t(q)d(1,2)[HZ i(c)? + 2H p cos(s)i(c)il(m) + p2cos(24)

.

+
Multiplication

JJ(H,r'p) = n JJ(qIH'°l¢)
q=Q,-1

= qEQ,—l ( JJO(q) + JJz(q,H,p,¢) ]l.

a(2) t(q)d(1,2)[ 2H p sin(é)i(c)i(m) + 02sin(24)i2(m) ]

of the single surface Jones matrices yields

Since JJg(q) is a constant function, independent of H, p, and 4,

the (H,p,4¢) dependence can
29 terms. The order of a term is the sum of the powers
and p, HY oV cos(¢)¥ , i.e. order = u + v

There is one first order term and Q second order terms.

The zero order Jones matrix is

i



I ¢

JJO = g=Q,-1 JJO(QIHlDr¢)) = t(q) =T ,

I
qg=1
the system amplitude transmittance. The second order Jones
matrix is greatly simplified since, for isotropic surfaces, all
zeroth order Jones matrices are a constant times the identity
matrix ¢(0). The second order only contains products which
contain a single second order term.' The second order Jones

matrix is

33,(8,0,0) = L 335(aH,0,) .

q
At second order the weakly polarizing isotropic interfaces do not
display order dependence. The product of any two second order
terms is fourth order. The order dependence enters at fourth and
higher order. Second order is a simple sum of polarization
contributions. Collecting the piston, tilt and defocus terms
from the second order Jones matrix provides the coefficients for

the system polarization aberration expansion to second order:

P(0,0,0,0) = T ,

P(0,2,0,0) = T I, 0d(0,2,q) i%tc)
P(0,1,1,1) = 2T I, 0d(0,2,q) i(c)i(m)
P(0,0,2,0) = T I, 0d(0,2,q) i*(m) ,
P(1,2,0,00 = T I od(1l,2,q) i%e)
P(1,1,1,1) = 2T ) o d(1,2,@) i(e)i(m)
P(1,0,2,2) = T L 41,2, i2(m) .

q=1,Q




The other three zero order coefficients and the other six second

order coefficients are all zero:

P(I'O'O'O) = P(Z,0,0,0) = P(3'o'0'0) = O ?
P(2,2,0,0) = P(2,1,1,1) = P(2,0,2,0) = O ,
P(3,2,0,0) = P(3,1,1,1) = P(3,0,2,0) = 0 .

The amplitude and polarization coefficients are the real

parts of the P coefficients
A(k,u,v,w) = Re(P(k,u,v,w)) .

The retardation coefficients are the imaginary parts
¢(k,u,v,w) = Im(P(k,u,v,w)). .

The polarization aberration coefficients are calculated for the
foreoptics from the paraxial geometry and the normalized C-

vectors for the coatings and interfaces.

Polarization Accuracy

Tﬁe Jones vecﬁor gives the amplitude of the electric field
and the square of the amplitude gives the intensity of the
components. With the Jones matrix one is able to calculate the
polarization effects f&r the optical system. From above the
second order the Jones matrix which gives the linear polarization

and linear retardence is




+ 02 cos(24) P(1,0,2,2) ].

+ o(2)[(2Hp sin(s) P(1,1,1,1) + p2 sin(26)P(1,0,2,2)]

The on axis linear polarization and linear retardance of the

SAMEX foroptics are characterized by the term linear defocus.

The instrumental polarization function JJ(H,p,4¢) for linear

. defocus is

JI(H,0,¢)

Here, t is the
optical axis.

reflection and

= t[ao + P(1,0,2,2)92(01c052¢ - czsin2¢)

. 2 .
r[ao + (a1022 + 361022)9 (01c052¢ - czsln2¢)] .

amplitude transmittance of the system down the

T
E

r
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-
L
]
)
)
f
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describes the polarization independent

absorption losses associated with the ray down the

optical axis at normal incidence at all interfaces. P(1,0,2,2)

describes the linear polarization (ajg;7) and linear retardance

(61022) associated with the marginal ray.

Maximum coupling occurs when the incident light is

circularly polarized, since circularly polarized light can always

be decomposed into equal components of Jr and Jt everywhere in

the pupil. The coupling is zero in the center of the pupil

(where the polarization and retardance vanishes) and increases to

a maximum coupling fraction of




an

= 2 _ .2 2
Ic'max(Hlll¢) lp(llolzlz)l a1022+ 61022
at the edge of the pupil. The net fraction of incident circular
polarized light coupled into the orthogonal circular polarized

state is given by the integral over the pupil of

0
[

< 2 2n 1 ) 2 v 2
J——L-" fo de fo pdp|o“tP(1,0,2,2)]

|+p(1,0,2,2) |2
3 L 3

For incident linear or illiptical polarized light, the fraction
of coupled intensity is less because the light is not composed of
equal fractions of eigenstates.

The coupling is minimum for incident linear polarized light,
which will be in one of the eigenpolarizations along one axis in
the pupil and in the orthogonal eigenpolarization along the
orthogonal axis. The fraction of coupled energy will be
calculated assuming an incdient polarization state of horizontal
linear polarized light g for calculational simplicity, the same
fraction is coupled for any linear polarized incident state. The
polarization state transmitted by an optical system described by

linear polarization defocus for H in is

J(H,p, ) = t(H + P(1,0,2,2) p(H cos 2¢ - V sin 2¢)).




The fraction of incident i light couplied into G.light is equal

to

2 27 1 -
o= 5 T a1 eae|3cH,0,0) - V)2
m 0 0

e 2 2w 1 2 . 2
= .l_L_1r fo d¢ [0 pdp|P(1,0,2,2)p sin2¢|

2 2% - o1
- |rP(1'2:2r2)L Io sin22¢d¢‘ / psdo
0

|«p(1,0,2,2) ]2
6 L ]

This is the mininmum fraction of energy coupled by linear defocus
aberrations. Since any elliptically polarized incident beam can
be written as a sum of linear and circularly polarized light, the
coupling fraction for arbitrarily polarized light lies in the

range

|xe(1,0,2,2)|% _,  |:R(1,0,2,2)|3
6 e 3 :

When unpolarized of circularly polarized light is incident
on the optical system, maximum polarization coupling occurs.
This maximum is the polarization accurracy of a system and is

calculated by the coupling integral) Ic,max’

=1 2 2 2
IC,max T [ J’pup;i,llc (1) + ¢™(2) + ¢ (3)'pdod¢.




This integral must be evaluated numerically except for some
special cases (see section 3.5). However, an analytic upperbound

on the polarization accurracy can be easily established by using

the triangle inequality

Te,max ¢ 3 | Joupir(((Rele(IN? + (Relc(2)1% + (Relc(31)?)?
+((Im[c(l)])2 + (Im[c(2)])2'¥ (Im[c(3)])2)2]pdpd¢ .

We can evaluate the upper bound on the polarization accurracy
using the second order polarization aberration expansion

coefficients. The following integration is for the real part of

the aberration coefficients. Ay yvw

2 2 1
LS

2 2 2
de¢ fopdp[(alzooﬁ + ay;1,Hp cose + a;,,,p coS24)

+ (alllalsin¢ + alozzpzsin2¢)2]

2 .2 2
< [5]? a2, 6t s 21111% | 21022 ;
ST 1200 2 3

The corresponding integral, Iimaginary' is obtained by
substituting the imaginary part of the polarization aberration
coefficients, Gluvw, for a1y N the above expression. The

upperbound on the polarzation coupling is




Ic,max ¢ Ireal + Iimaginary
2 2 2 2 2 2
o |<|? (a2, gt oll1T fr022 2 e Sninnf ‘1022,
= |7]° [al200 7 3 1200 ) 3

2.2 2
|<)2[|p(1,2,0,0)|%u? + |P(1'1'§'1)| B, |P(1'°52'2)1 ]

This is the second order upp;r bound’ to the polarization coupling
for systems of weak polarizers.

Hence the average effect over the image and pupil can be
obtain by integrating over p, and ¢. The polarization
accuracy, Ap' defined aé the maximum fraction of light
(intensity) which can be coupled into orthogonal polarization
state. The incident polarized state is given by the Jones -
vector, J. This vector is effectively rotated by the optical
system and the rotation is given by the Jones matrix, JJ. The
amount of polarization along the orthogonal state of
polarization, 3', of the incident polarization state is given by

the projection of J3(3) into J',

This value is given by the square of the second order Jones
matrix and is given in terms of the polarization aberration
coefficients. (For the incident light in the polarization
state Ioﬁ, then the result of instrumental polarization is to

couple the polarization into the orthogonal state q. The amount




of coupling is given by

Ig

Iop > Io(l-Ap)p + Ap o

where Ap = polarization accuracy.) From the above results, the

polarization accuracy is given in terms of the second order
polarization abberation coefficientéAP(l,O,Z,Z), P(,1,1,1,1), and

P(1,2,0,0) :

(>
1}

% f |JJ2(H=1,D.¢)|zodod¢

or

>
I

= 2p2(1,2,0,0) + %92(1,1,1,1) + %PZ(I,O,Z,Z)

where the integrations have been carried out for the squared
terms and estimated for the crossed terms. For the SAMEX
magnetograph design given herein the polarization accuracy value

of

A < 1.4 x 10”7

p
is obtained for specially selected optical coatings was
obtained. These second order aberration coefficients are given
in Section II-4. The second order coefficients are sufficients
since the next order that contributes is the forth order. The

polarization effects would be on the order of (Ap)z.

C-2




